-
详细信息
-
学术研究
个人简介
郭晨娟,华东师范大学,数据科学与工程学院,教授、博士生导师。2021年入选国家级青年人才计划。英国曼彻斯特大学博士,曾任职丹麦奥尔堡大学,工程技术学院, 计算机系终身副教授。主要研究领域是数据管理和数据分析,涉及在智能交通,数字能源,和智能水资源管理等上的应用。已在主流知名国际会议和国际期刊上发表了多篇论文,包括Nature Communications, SIGMOD, VLDB,ICDE,IJCAI,AAAI,KDD,WWW,ICML,NeurIPS, ICLR,VLDB Journal, TKDE等。并担任IEEE TKDE、IEEE TMC等多个顶级期刊的专家审稿人,以及ICML,NeurIPS, ICLR,IJCAI、AAAI,ICDE,KDD,PVLDB等若干国际顶级会议的程序委员。
职称
教授,博士生导师。
决策智能实验室主页
https://decisionintelligence.github.io/
欢迎本科生、研究生、博士生、博士后加入实验室!
专著:时序智能——面向时间序列分析的人工智能方法 正式上线!
研究方向
数据管理与分析(Data Management and Analytics),机器学习(Machine Learning)
时间序列分析(Time Series Analytics),时空序列分析(Spatio-Temporal Data Analytics),AI for Science
时间序列基础模型(Time Series Foundation Models),自动机器学习(AutoML),多智能体(Multi-Agents)
科研项目
可解释的自动时间序列异常点预测,国家自然科学基金,2024-2027
时间序列分析基础模型,华为校企合作项目,2023-2025
多源异构数据的异常检测和根因分析,阿里巴巴校企合作项目,2023-2024
Time Series Analytics, 华为校企合作项目,2023-2024
基于负载预测的云计算资源调度优化算法,阿里巴巴校企合作项目,2022-2023
时空数据管理与分析,国家自然科学基金,2022-2025
Explainable AI for Complex Microbial Community Interactions and Predictions, funded by Villum Fonden, Denmark, in collaboration with Prof. Per Halkjær Nielsen, 2021 - 2024.
Light-AI for Cognitive Power Electronics, funded by Villum Fonden, Denmark, 2020-2023.
Time Series Analytics and Spatio-temporal Data Management, funded by Huawei, 2020 - 2022.
Advance: A Data-Intensive Paradigm for Dynamic, Uncertain Networks, funded by Independent Research Fund Denmark, 2019 - 2023.
Astra: AnalyticS of Time seRies in spAtial networks, funded by Independent Research Fund Denmark, 2018 - 2021.
Collaboration with BlipTrack, funded by Forskerpuljen, 2018.
Selected Papers:
Full Lists: DBLP Google Scholar
Xvyuan Liu, Xiangfei Qiu, Xingjian Wu, Zhengyu Li, Chenjuan Guo, Jilin Hu, Bin Yang: Rethinking Irregular Time Series Forecasting: A Simple yet Effective Baseline. AAAI Oral (2026) CCF-A
Junkai Lu, Peng Chen, Chenjuan Guo, Yang Shu, Meng Wang, Bin Yang: Towards Non-Stationary Time Series Forecasting with Temporal Stabilization and Frequency Differencing. AAAI (2026) CCF-A
Ronghui Xu, Jihao chen, Jindong Tian, Chenjuan Guo, Bin Yang: MoST: A Foundation Model for Multi-modality Spatio-temporal Traffic Prediction. KDD (2026) CCF-A
Kasper Skytte Andersen, Kai Zhao, Alexander de Linde Agerskov, Christian Bro Sørensen, Trine Juhl Holmager, Marta Nierychlo, Miriam Peces, Chenjuan Guo, Per Halkjær Nielsen: Predicting microbial community structure and temporal dynamics by using graph neural network models. Nature Communications, volume 16, Article number: 9124 (2025)
Beibu Li, Qichao Shentu, Yang Shu, Hui Zhang, Ming Li, Ning Jin, Bin Yang, Chenjuan Guo: CrossAD: Time Series Anomaly Detection with Cross-scale Associations and Cross-window Modeling. NeurIPS (2025) CCF-A
Xingjian Wu, Xiangfei Qiu, Hanyin Cheng, Zhengyu Li, Jilin Hu, Chenjuan Guo, Bin Yang: Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective. NeurIPS spotlight (2025) CCF-A
Siru Zhong, Junjie Qiu, Yangyu Wu, Xingchen Zou, Zhongwen Rao, Bin Yang, Chenjuan Guo, Hao Xu, Yuxuan Liang: Learning to Factorize Spatio-Temporal Foundation Models. NeurIPS spotlight (2025) CCF-A
Xiangfei Qiu, Xingjian Wu, Hanyin Cheng, Xvyuan Liu, Chenjuan Guo, Jilin Hu, Bin Yang: DBLoss: Decomposition-based Loss Function for Time Series Forecasting. NeurIPS (2025) CCF-A
Kai Zhao, Zhihao Zhuang, Chenjuan Guo, Hao Miao, Yunyao Cheng, Bin Yang: Unsupervised Time Series Anomaly Prediction with Importance-based Generative Contrastive Learning. KDD (2025) CCF-A
Yihang Wang, Yuying Qiu, Peng Chen, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo: LightGTS: A Lightweight General Time Series Forecasting Model. ICML (2025) CCF-A
Yihang Wang, Yuying Qiu, Peng Chen, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo: Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer. ICML (2025) CCF-A
Xingjian Wu, Xiangfei Qiu, Hongfan Gao, Jilin Hu, Bin Yang, Chenjuan Guo: K^2VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting. ICML (2025) CCF-A
Zhe Li, Xiangfei Qiu, Peng Chen, Yihang Wang, Hanyin Cheng, Yang Shu, Jilin Hu, Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Bin Yang: TSFM-Bench: A Comprehensive and Unified Benchmark of Foundation Models for Time Series Forecasting. KDD (2025) CCF-A
Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, Bin Yang: TAB: Unified Benchmarking of Time Series Anomaly Detection Methods. Proc. VLDB Endow. 18(9): 2775-2789 (2025) CCF-A
Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, Christian S. Jensen: Spatio-Temporal Prediction on Streaming Data: A Unified Federated Continuous Learning Framework. IEEE Trans. Knowl. Data Eng. 37(4): 2126-2140 (2025) CCF-A
Yunyao Cheng, Chenjuan Guo, Kaixuan Chen, Kai Zhao, Bin Yang, Jiandong Xie, Christian S. Jensen, Feiteng Huang, Kai Zheng: Gaussian Process Latent Variable Modeling for Few-Shot Time Series Forecasting. IEEE Trans. Knowl. Data Eng. 37(8): 4604-4619 (2025) CCF-A
Tengxue Zhang, Yang Shu, Xinyang Chen, Yifei Long, Chenjuan Guo, Bin Yang: Assessing Pre-Trained Models for Transfer Learning Through Distribution of Spectral Components. AAAI (2025): 22560-22568 CCF-A
Kai Zhao, Zhihao Zhuang, Miao Zhang, Chenjuan Guo, Yang Shu, Bin Yang: Enhancing Diversity for Data-free Quantization. CVPR Oral (2025): 20969-20978 CCF-A
Yuxuan Chen, Shanshan Huang, Yunyao Cheng, Peng Chen, Zhongwen Rao, Yang Shu, Bin Yang, Lujia Pan, Chenjuan Guo: AimTS: Augmented Series and Image Contrastive Learning for Time Series Classification. ICDE (2025): 1952-1965 CCF-A
Xiuwen Li, Qifeng Cai, Yang Shu, Chenjuan Guo, Bin Yang: AID-SQL: Adaptive In-Context Learning of Text-to-SQL with Difficulty-Aware Instruction and Retrieval-Augmented Generation. ICDE (2025): 3945-3957 CCF-A
Bin Yang, Yuxuan Liang, Chenjuan Guo, Christian S. Jensen: Data Driven Decision Making with Time Series and Spatio-Temporal Data. ICDE (2025): 4517-4522 CCF-A
Xiangfei Qiu, Xiuwen Li, Ruiyang Pang, Zhicheng Pan, Xingjian Wu, Liu Yang, Jilin Hu, Yang Shu, Xuesong Lu, Chengcheng Yang, Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Bin Yang: EasyTime: Time Series Forecasting Made Easy. ICDE (2025): 4564-4567 CCF-A
Sicong Liu, Yang Shu, Chenjuan Guo, Bin Yang: Learning Generalizable Skills from Offline Multi-Task Data for Multi-Agent Cooperation. ICLR (2025)
Qichao Shentu, Beibu Li, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo: Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders. ICLR (2025)
Jindong Tian, Yuxuan Liang, Ronghui Xu, Peng Chen, Chenjuan Guo, Aoying Zhou, Lujia Pan, Zhongwen Rao, Bin Yang: Air Quality Prediction with Physics-Guided Dual Neural ODEs in Open Systems. ICLR (2025)
Xingjian Wu, Xiangfei Qiu, Zhengyu Li, Yihang Wang, Jilin Hu, Chenjuan Guo, Hui Xiong, Bin Yang: CATCH: Channel-Aware Multivariate Time Series Anomaly Detection via Frequency Patching. ICLR (2025)
Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, Bin Yang: DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting. KDD (1) 2025: 1185-1196 CCF-A
Ronghui Xu, Hanyin Cheng, Chenjuan Guo, Hongfan Gao, Jilin Hu, Sean Bin Yang, Bin Yang: MM-Path: Multi-modal, Multi-granularity Path Representation Learning. KDD (1) 2025: 1703-1714 CCF-A
Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, Christian S. Jensen: Fully Automated Correlated Time Series Forecasting in Minutes. Proc. VLDB Endow. 18(2): 144-157 (2024) CCF-A
Yunyao Cheng, Chenjuan Guo, Bin Yang, Haomin Yu, Kai Zhao, Christian S. Jensen: A Memory Guided Transformer for Time Series Forecasting. Proc. VLDB Endow. 18(2): 239-252 (2024) CCF-A
Zhihao Zhuang, Yingying Zhang, Kai Zhao, Chenjuan Guo, Bin Yang, Qingsong Wen, Lunting Fan: Noise Matters: Cross Contrastive Learning for Flink Anomaly Detection. Proc. VLDB Endow. 18(4): 1159-1168 (2024) CCF-A
Biao Ouyang, Yingying Zhang, Hanyin Cheng, Yang Shu, Chenjuan Guo, Bin Yang, Qingsong Wen, Lunting Fan, Christian S. Jensen: RCRank: Multimodal Ranking of Root Causes of Slow Queries in Cloud Database Systems. Proc. VLDB Endow. 18(4): 1169-1182 (2024) CCF-A
Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Zhenli Sheng, Bin Yang: TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods. Proc. VLDB Endow. 17(9): 2363-2377 (2024) CCF-A
David Campos, Bin Yang, Tung Kieu, Miao Zhang, Chenjuan Guo, Christian S. Jensen: QCore: Data-Efficient, On-Device Continual Calibration for Quantized Models. Proc. VLDB Endow. 17(11): 2708-2721 (2024) CCF-A
Chenjuan Guo, Ronghui Xu, Bin Yang, Yuan Ye, Tung Kieu, Yan Zhao, Christian S. Jensen: Efficient Stochastic Routing in Path-Centric Uncertain Road Networks. Proc. VLDB Endow. 17(11): 2893-2905 (2024) CCF-A
Xinle Wu, Xingjian Wu, Bin Yang, Lekui Zhou, Chenjuan Guo, Xiangfei Qiu, Jilin Hu, Zhenli Sheng, Christian S. Jensen: AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting. VLDB J. 33(5): 1743-1770 (2024) CCF-A
Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, Feiteng Huang, Jiandong Xie, Christian S. Jensen: A Unified Replay-Based Continuous Learning Framework for Spatio-Temporal Prediction on Streaming Data. ICDE (2024): 1050-1062 CCF-A
Christian S. Jensen, Bin Yang, Chenjuan Guo, Jilin Hu, Kristian Torp: Routing with Massive Trajectory Data. ICDE (2024): 5542-5547 CCF-A
Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang, Chenjuan Guo: Pathformer: Multi-scale Transformers with Adaptive Pathways for Time Series Forecasting. ICLR (2024)
Xinle Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, Christian S. Jensen: AutoCTS+: Joint Neural Architecture and Hyperparameter Search for Correlated Time Series Forecasting. Proc. ACM Manag. Data 1(1): 97:1-97:26 (2023) CCF-A
David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, Christian S. Jensen: LightTS: Lightweight Time Series Classification with Adaptive Ensemble Distillation. Proc. ACM Manag. Data 1(2): 171:1-171:27 (2023) CCF-A
Zhicheng Pan, Yihang Wang, Yingying Zhang, Sean Bin Yang, Yunyao Cheng, Peng Chen, Chenjuan Guo, Qingsong Wen, Xiduo Tian, Yunliang Dou, Zhiqiang Zhou, Chengcheng Yang, Aoying Zhou, Bin Yang: MagicScaler: Uncertainty-aware, Predictive Autoscaling. Proc. VLDB Endow. 16(12): 3808-3821 (2023) CCF-A
Sean Bin Yang, Jilin Hu, Chenjuan Guo, Bin Yang, Christian S. Jensen: LightPath: Lightweight and Scalable Path Representation Learning. KDD (2023): 2999-3010 CCF-A
Haomin Yu, Jilin Hu, Xinyuan Zhou, Chenjuan Guo, Bin Yang, Qingyong Li: CGF: A Category Guidance Based PM2.5 Sequence Forecasting Training Framework. IEEE Trans. Knowl. Data Eng. 35(10): 10125-10139 (2023) CCF-A
Shufang Xie, Rui Yan, Peng Han, Yingce Xia, Lijun Wu, Chenjuan Guo, Bin Yang, Tao Qin: RetroGraph: Retrosynthetic Planning with Graph Search. KDD (2022): 2120-2129 CCF-A
Sean Bin Yang, Chenjuan Guo, Bin Yang: Context-Aware Path Ranking in Road Networks. IEEE Trans. Knowl. Data Eng. 34(7): 3153-3168 (2022) CCF-A
Tung Kieu, Bin Yang, Chenjuan Guo, Razvan-Gabriel Cirstea, Yan Zhao, Yale Song, Christian S. Jensen: Anomaly Detection in Time Series with Robust Variational Quasi-Recurrent Autoencoders. ICDE (2022): 1342-1354 CCF-A
Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, Christian S. Jensen: Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning. ICDE (2022): 2873-2885 CCF-A
Razvan-Gabriel Cirstea, Bin Yang, Chenjuan Guo, Tung Kieu, Shirui Pan: Towards Spatio- Temporal Aware Traffic Time Series Forecasting. ICDE (2022): 2900-2913 CCF-A
Tung Kieu, Bin Yang, Chenjuan Guo, Christian S. Jensen, Yan Zhao, Feiteng Huang, Kai Zheng: Robust and Explainable Autoencoders for Unsupervised Time Series Outlier Detection. ICDE (2022): 3038-3050 CCF-A
Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, Shirui Pan: Triformer: Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting. IJCAI (2022): 1994-2001 CCF-A
Yan Zhao, Xuanhao Chen, Liwei Deng, Tung Kieu, Chenjuan Guo, Bin Yang, Kai Zheng, Christian S. Jensen: Outlier Detection for Streaming Task Assignment in Crowdsourcing. WWW (2022): 1933-1943 CCF-A
David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang, and Christian S. Jensen. Unsupervised Time Series Outlier Detection with Diversity-Driven Convolutional Ensembles. Proc. VLDB Endow. 15(3): 611-623 (2021) CCF-A
Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin Yang, Christian S. Jensen: AutoCTS: Automated Correlated Time Series Forecasting. Proc. VLDB Endow. 15(4): 971-983 (2021) CCF-A
Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, Sinno Jialin Pan: EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time Series Forecasting. ICDE (2021): 1739-1750. CCF-A
Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, Bin Yang: Unsupervised Path Representation Learning with Curriculum Negative Sampling. IJCAI (2021): 3286-3292. CCF-A



